Analysis of Techniques for Detection and Removal of Zero-Day Attacks (ZDA)
Author:
Publisher
Springer Nature Singapore
Link
https://link.springer.com/content/pdf/10.1007/978-981-99-0272-9_17
Reference28 articles.
1. Parrend, P., Navarro, J., Guigou, F., Deruyver, A., Collet, P.: Foundations and applications of artificial Intelligence for zero-day and multi-step attack detection. EURASIP J. Inf. Secur. 2018(1), 1–21 (2018). https://doi.org/10.1186/s13635-018-0074-y
2. Venkatesan, R., Kumar, G.A., Nandhan, M.R.: A novel approach to detect ddos attack through virtual honeypot. In: 2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA), pp. 1–6 (2018)
3. Hindy, H., Atkinson, R., Tachtatzis, C., Colin, J.-N., Bayne, E., Bellekens, X.: Utilising deep learning techniques for effective zero-day attack detection. Electronics 9, 1684 (2020)
4. Tang, R., et al.: Zerowall: detecting zero-day web attacks through encoder-decoder recurrent neural networks. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pp. 2479–2488. IEEE (2020)
5. Sharma, V., et al.: A consensus framework for reliability and mitigation of zero-day attacks in IoT. Secur. Commun. Netw. 2017, 1–24 (2017)
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Generative AI in Network Security and Intrusion Detection;Advances in Information Security, Privacy, and Ethics;2024-07-26
2. Identification of the Requirement Change Management and Maturity Model in the Internet of Things (IoT);Bulletin of Business and Economics (BBE);2024-06-01
3. Enhancing Zero-Day Attack Detection with XAI-Driven ML Models and SMOTE Analysis;2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT);2024-05-03
4. Failures and Repairs: An Examination of Software System Failure;Bulletin of Business and Economics (BBE);2024-03-25
5. Comprehensive Analysis of DevOps: Integration, Automation, Collaboration, and Continuous Delivery;Bulletin of Business and Economics (BBE);2024-03-25
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3