Randomly Weighted CKF for Multisensor Integrated Systems

Author:

Zong Hua1,Gao Zhaohui2ORCID,Wei Wenhui2,Zhong Yongmin3,Gu Chengfan4

Affiliation:

1. National Key Laboratory of Science and Technology on Aerospace Intelligent Control, Beijing 100854, China

2. School of Automatics, Northwestern Polytechnical University, Xi’an 710072, China

3. School of Engineering, RMIT University, Bundoora, VIC 3083, Australia

4. Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (DAMAS), Université de Lorraine, France

Abstract

The cubature Kalman filter (CKF) is an estimation method for nonlinear Gaussian systems. However, its filtering solution is affected by system error, leading to biased or diverged system state estimation. This paper proposes a randomly weighted CKF (RWCKF) to handle the CKF limitation. This method incorporates random weights in CKF to restrain system error’s influence on system state estimation by dynamic modification of cubature point weights. Randomly weighted theories are established to estimate predicted system state and system measurement as well as their covariances. Simulation and experimental results as well as comparison analyses demonstrate the presented RWCKF conquers the CKF problem, leading to enhanced accuracy for system state estimation.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3