Experimental Study and Microscopic Analysis on Frost Resistance of Iron Ore Tailings Recycled Aggregate Concrete

Author:

Gong Li1,Gong Xuelei1ORCID,Liang Ying1,Jia Zhiyuan1,Li Yiqiang1

Affiliation:

1. Department of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

Abstract

Freeze-thaw harm is the major factor that reduces the durability of hydraulic concrete buildings at high altitudes and in cold regions. To solve the durability problem of hydraulic buildings in alpine regions, the study prepared sixteen groups of concrete specimens with different replacement ratios of iron ore tailings and recycled aggregate were prepared, and indoor deterioration accelerated tests were designed. Nuclear magnetic resonance (NMR) technology was used to analyze the pore distribution in the structure, and macro indicators of concrete mass loss rate and relative dynamic elastic modulus (RDEM), were selected. Combined with SEM, images, the frost resistance of iron ore tailings sand (IOT), with Recycled aggregate concrete (RAC), was explored. The final analysis shows that when only RCA is replaced, the frost resistance of RAC decreases with the increase of the RCA replacement rate. When only replacing IOT, the frost resistance of IOT concrete with a replacement rate of 50% is better than that of other replacement rates. In addition to ordinary concrete, the combination of 30% iron ore tailings and 30% recycled aggregate concrete (RAC3-IOT3) has good frost resistance. The mass loss of the RAC3-IOT3, specimen increased by 0.09% compared with ordinary concrete. From the microscopic level, with the addition of the dosage of RCA, the number of macropores (0.05∼1 μm) and microcracks (>1 μm) in concrete increased. After replacing the appropriate amount of iron ore tailings, the pore space structure of RAC was improved, and some harmful pores spaces were transformed into harmless pores. However, the combination of excess IOT, and RCA, does not improve the interface transition zone of RCA. From the micromorphology, with an increasing dosage of RCA, the bonding force between cementitious material and sand aggregate weakens and there are more pores. The combination of excess IOT, and RCA, does not improve the interface transition zone of RCA but will accelerate the spalling of surface mortar because of its small fineness. All things considered, RAC3-IOT3 is the most suitable concrete for high altitude and cold areas.

Funder

National Science Foundation

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Reference36 articles.

1. A review on durability of nano-SiO2 and basalt fiber modified recycled aggregate concrete

2. Increase insulation effect of polyurethane board pasting on closed aqueduct surface in cold regions;L. Deren;Transactions of the Chinese Society of Agricultural Engineering,2013

3. Mechanism of aqueducts in cold and dry areas under effect of salt-frozen coupling erosion;G. L. K. Chuntao;China Safety Science Journal,2020

4. Experimental study on the interface between low cement recycled aggregates concrete and ultra-high durability concrete

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3