Protective Effects of Cinnamaldehyde on the Oxidative Stress, Inflammatory Response, and Apoptosis in the Hepatocytes of Salmonella Gallinarum-Challenged Young Chicks

Author:

Yin Lizi1ORCID,Hussain Sajjad1ORCID,Tang Ting1,Gou Yuhong1,He Changliang1,Liang Xiaoxia1,Yin Zhongqiong1,Shu Gang1,Zou Yuanfeng1,Fu Hualin1,Song Xu1,Tang Huaqiao1,Xu Funeng1,Ouyang Ping1ORCID

Affiliation:

1. College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang 611130, China

Abstract

The development of novel therapeutics to treat multidrug-resistant pathogenic infections like Salmonella gallinarum is the need of the hour. Salmonella infection causes typhoid fever, jaundice, and Salmonella hepatitis resulting in severe liver injury. Natural compounds have been proved beneficial for the treatment of these bacterial infections. The beneficial roles of cinnamaldehyde due to its antibacterial, anti-inflammatory, and antioxidative properties have been determined by many researchers. However, alleviation of liver damage caused by S. gallinarum infection to young chicks by cinnamaldehyde remains largely unknown. Therefore, this study was performed to identify the effects of cinnamaldehyde on ameliorating liver damage in young chicks. Young chicks were intraperitoneally infected with S. gallinarum and treated with cinnamaldehyde orally. Liver and serum parameters were investigated by qRT-PCR, ELISA kits, biochemistry kits, flow cytometry, JC-1 dye experiment, and transcriptome analysis. We found that ROS, cytochrome c, mitochondrial membrane potential (Ψm), caspase-3 activity, ATP production, hepatic CFU, ALT, and AST, which were initially increased by Salmonella infection, significantly ( P < 0.05 ) decreased by cinnamaldehyde treatment at 1, 3, and 5 days postinfection (DPI). In addition, S. gallinarum infection significantly increased proinflammatory gene expression (IL-1β, IL-6, IL-12, NF-κB, TNF-α, and MyD-88) and decreased the expression of anti-inflammatory genes (IL-8, IL-10, and iNOS); however, cinnamaldehyde reverted these effects at 1, 3, and 5 DPI. Transcriptome analysis showed that S. gallinarum modulates certain genes of the AMPK-mTOR pathway for its survival and replication, and these pathway modulations were reversed by cinnamaldehyde treatment. We concluded that cinnamaldehyde ameliorates inflammation and apoptosis by suppressing NF-Kβ/caspase-3 pathway and reverts the metabolic changes caused by S. gallinarum infection via modulating the AMPK-mTOR pathway. Furthermore, cinnamaldehyde has antibacterial, anti-inflammatory, antioxidative, and antiapoptotic properties against S. gallinarum-challenged young chicks and can be a candidate novel drug to treat salmonellosis in poultry production.

Funder

Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3