Research on Pipeline Damage Imaging Technology Based on Ultrasonic Guided Waves

Author:

He Jian1ORCID,Zhou Chen1,Yang Liang1,Sun Xiaodan1ORCID

Affiliation:

1. College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 15001, China

Abstract

Pipeline structures are important structural components that cannot be replaced in actual engineering applications. Damage to a pipeline structure will create substantial safety hazards and economic losses in a project. Therefore, it is extremely important to study damaged pipeline structures. In this paper, L(0,2) mode guided waves are used to identify, locate, and image single and double defects in straight pipe structures. For the case where there is a single defect in the straight pipe section, the influence of different excitation frequencies on the reflection coefficient of L(0,2) modal guided wave is studied, and the optimal excitation frequency of L(0,2) guided wave is 70 kHz when single damage is determined. For the case of double defects in the straight pipe section, the double-defect size, the distance between the defects, and the relative defect positions are studied, and the influence of the defect recognition effect is analyzed. The propagation path of the ultrasonic guided wave in the double-defect pipe section is analyzed. Finally, the effectiveness of the three-point axial positioning method and damage imaging method is verified by the single-defect tube segment ultrasonic guided wave flaw detection experiment.

Funder

Natural Science Foundation of Heilongjiang Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3