Affiliation:
1. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China
2. Jiangsu Key Laboratory of Mine Mechanical and Electrical Equipment, China University of Mining and Technology, Xuzhou 221116, China
Abstract
In order to diagnose bearing faults under different operating state and limited sample condition, a fault diagnosis method based on adjusted spectrum image of vibration signal is proposed in this paper. Firstly, the Davies–Bouldin index (DBI) is employed to select a proper capture focus (CF) and image size, and the spectrum of vibration signal is computed via fast Fourier transformation (FFT) and adjusted according to the average rotating speed. Then, the spectrum is plotted and captured as a two-dimensional (2D) image with the optimized CF and image size. Two-dimensional principal component analysis (2DPCA) is used to reduce the dimension of images, and finally a nearest neighbour method is applied to classify the faults of bearings. Two experiments are carried out to validate the effectiveness of the proposed method. Besides, a further investigation on the effect of spectrum frequency resolution is conducted and a recommended selection method of frequency resolution is given based on the experimental performances. In our method, the training samples could be from only one operating condition, while the testing samples are from all possible operation conditions. All experiment results have demonstrated that the proposed method could achieve high classification accuracy even with very limited training samples.
Funder
National Key R&D Program of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献