Vibration Image Representations for Fault Diagnosis of Rotating Machines: A Review

Author:

Ahmed Hosameldin Osman Abdallah,Nandi Asoke KumarORCID

Abstract

Rotating machine vibration signals typically represent a large collection of responses from various sources in a machine, along with some background noise. This makes it challenging to precisely utilise the collected vibration signals for machine fault diagnosis. Much of the research in this area has focused on computing certain features of the original vibration signal in the time domain, frequency domain, and time–frequency domain, which can sufficiently describe the signal in essence. Yet, computing useful features from noisy fault signals, including measurement errors, needs expert prior knowledge and human labour. The past two decades have seen rapid developments in the application of feature-learning or representation-learning techniques that can automatically learn representations of time series vibration datasets to address this problem. These include supervised learning techniques with known data classes and unsupervised learning or clustering techniques with data classes or class boundaries that are not obtainable. More recent developments in the field of computer vision have led to a renewed interest in transforming the 1D time series vibration signal into a 2D image, which can often offer discriminative descriptions of vibration signals. Several forms of features can be learned from the vibration images, including shape, colour, texture, pixel intensity, etc. Given its high performance in fault diagnosis, the image representation of vibration signals is receiving growing attention from researchers. In this paper, we review the works associated with vibration image representation-based fault detection and diagnosis for rotating machines in order to chart the progress in this field. We present the first comprehensive survey of this topic by summarising and categorising existing vibration image representation techniques based on their characteristics and the processing domain of the vibration signal. In addition, we also analyse the application of these techniques in rotating machine fault detection and classification. Finally, we briefly outline future research directions based on the reviewed works.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3