Experimental Study on Well Placement Optimization for Steam-Assisted Gravity Drainage to Enhance Recovery of Thin Layer Oil Sand Reservoirs

Author:

Tao Lei1,Yuan Xiao1,Cheng Hao1,Li Bingchao1,Huang Sen1,Zhang Na2ORCID

Affiliation:

1. College of Petroleum Engineering, Changzhou University, Changzhou 213164, China

2. College of Petrochemical Engineering, Changzhou University, Changzhou 213164, China

Abstract

SAGD (steam-assisted gravity drainage) technique is one of the most efficient thermal recovery technologies for exploiting Mackay River thin layer oil sand reservoirs. However, when making use of the traditional SAGD technique (the production and injection well are located on the same axis with the horizontal well spacing of 0 m), the steam chamber development is usually insufficient because of the high longitudinal sweep rate of steam, which seriously influences the SAGD performance for developing thin layer oil sand reservoirs especially. It is extremely important to find an economical and practicable method to promote the steam chamber development in thin oil sand reservoirs in the process of SAGD production; optimizing well placement is a reliable method. In this paper, an improved well placement method is proposed to enhance production performance of traditional SAGD, which is changing the horizontal well spacing to place the production well below of the side of the injection well (two wells are not located on the same axis). Three groups of 2D visualization experiments with different horizontal distances between two wells (0 cm, 10 cm, and 20 cm) were carried out, respectively, to observe the development and change of the steam chamber development, and to explore the EOR mechanisms. On the 2D experiment basis, optimal horizontal distance was selected to perform 3D physical simulation experiment to study and verity the production mechanism systematically. The results of 2D visualization experiment showed that the final oil recoveries of experimental groups with 10 cm and 20 cm horizontal distances were 7.6% and 2.3% higher than those of traditional SGAD (horizontal distance was 0 cm), respectively. Combined with 3D experimental results, the change in the horizontal relative position of two wells makes the steam first spread laterally between injecting and producing wells; thus, the lateral development of the steam chamber was promoted, and changes of temperature field also display that the lateral sweep area of steam was increased obviously and the form of steam chamber is changed. Meanwhile, the generation of appropriate horizontal well spacing can combine the effect of steam displacement and gravity drainage better and improve the sweep efficiency of steam. Nevertheless, the overlarge horizontal well spacing will also hinder the steam chamber development because the strength of steam overlap is weakened. Furthermore, the findings of this study help for better understanding that changing the horizontal well spacing can promote the lateral development of steam chamber, which can be used to enhance the oil recovery of thin layer oil sand reservoirs especially.

Funder

Postgraduate Research & Practice Program of Jiangsu Province

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3