Visual Classification of Music Style Transfer Based on PSO-BP Rating Prediction Model

Author:

Li Tianjiao1ORCID

Affiliation:

1. School of Art, Shandong Management University, Jinan, Shandong 250000, China

Abstract

In this paper, based on computer reading and processing of music frequency, amplitude, timbre, image pixel, color filling, and so forth, a method of image style transfer guided by music feature data is implemented in real-time playback, using existing music files and image files, processing and trying to reconstruct the fluent relationship between the two in terms of auditory and visual, generating dynamic, musical sound visualization with real-time changes in the visualization. Although recommendation systems have been well developed in real applications, the limitations of CF algorithms are slowly coming to light as the number of people increases day by day, such as the data sparsity problem caused by the scarcity of rated items, the cold start problem caused by new items and new users. The work is dynamic, with real-time changes in music and sound. Taking portraits as an experimental case, but allowing users to customize the input of both music and image files, this new visualization can provide users with a personalized service of mass customization and generate personalized portraits according to personal preferences. At the same time, we take advantage of the BP neural network’s ability to handle complex nonlinear problems and construct a rating prediction model between the user and item attribute features, referred to as the PSO-BP rating prediction model, by combining the features of global optimization of particle swarm optimization algorithm, and make further improvements based on the traditional collaborative filtering algorithm.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Retracted: Visual Classification of Music Style Transfer Based on PSO-BP Rating Prediction Model;Complexity;2023-08-23

2. Strategies for smoothing power fluctuations in lithium-ion battery–supercapacitor energy storage systems;International Journal of Low-Carbon Technologies;2023

3. Swarm intelligence for new materials;Computational Materials Science;2022-11

4. Application of BP Neural Network in Matching Algorithm of Network E-Commerce Platform;Journal of Sensors;2022-08-26

5. Design of Music Style Classification Teaching System based on BP Neural Network;2022 International Conference on Information System, Computing and Educational Technology (ICISCET);2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3