Affiliation:
1. School of Art, Shandong Management University, Jinan, Shandong 250000, China
Abstract
In this paper, based on computer reading and processing of music frequency, amplitude, timbre, image pixel, color filling, and so forth, a method of image style transfer guided by music feature data is implemented in real-time playback, using existing music files and image files, processing and trying to reconstruct the fluent relationship between the two in terms of auditory and visual, generating dynamic, musical sound visualization with real-time changes in the visualization. Although recommendation systems have been well developed in real applications, the limitations of CF algorithms are slowly coming to light as the number of people increases day by day, such as the data sparsity problem caused by the scarcity of rated items, the cold start problem caused by new items and new users. The work is dynamic, with real-time changes in music and sound. Taking portraits as an experimental case, but allowing users to customize the input of both music and image files, this new visualization can provide users with a personalized service of mass customization and generate personalized portraits according to personal preferences. At the same time, we take advantage of the BP neural network’s ability to handle complex nonlinear problems and construct a rating prediction model between the user and item attribute features, referred to as the PSO-BP rating prediction model, by combining the features of global optimization of particle swarm optimization algorithm, and make further improvements based on the traditional collaborative filtering algorithm.
Subject
Multidisciplinary,General Computer Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献