Strategies for smoothing power fluctuations in lithium-ion battery–supercapacitor energy storage systems

Author:

Liu Zenglei1,Lu An2ORCID

Affiliation:

1. Hunan Institute of Technology School of Electrical and Information Engineering, , No. 18, Henghua Road, Zhuhui District, Hengyang, Hunan 421002, China

2. Chongqing Academy of Metrology and Quality Inspection , No. 1, Yangliu North Road, Yubei District, Chongqing 401120, China

Abstract

Abstract Onshore wind power has received attention from governments, including China and Europe, as a renewable energy generation technology. Still, it is highly influenced by weather factors and often requires energy storage systems to smooth its power. The hybrid energy storage system (HESS), comprising a lithium-ion battery and a supercapacitor (SC), fully uses the advantages of both the lithium-ion battery and SC with high energy and high power density. The contribution of this paper is to give a control strategy for internal power coordination and smoothing power fluctuation in HESS. For internal power coordination, when the state of charge (SOC) of a lithium-ion battery and SC are not in the normal range simultaneously, the lithium-ion battery power limit must be adjusted to regulate their SOC. In contrast, for smoothing power fluctuation, a low-pass filter is used to reduce the charge/discharge depth of the lithium-ion battery and maintain the SOC of SC. The trigonometric factor is used to optimize the particle swarm optimization (PSO) to obtain a better power distribution value. The proposed strategy is optimized using onshore wind power generation and load 1-day power variation, and the results achieve the desired goal with superior application.

Publisher

Oxford University Press (OUP)

Subject

General Environmental Science,Architecture,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3