Radar-Assisted UAV Detection and Identification Based on 5G in the Internet of Things

Author:

Zhao Jingcheng1ORCID,Fu Xinru1ORCID,Yang Zongkai1,Xu Fengtong1

Affiliation:

1. School of Electronics and Information Engineering, Beihang University, China

Abstract

Unmanned aerial vehicles (UAVs) have broad application potential for the Internet of Things (IoT) due to their small size, low cost, and flexible control. At present, the main positioning method for UAVs is the use of GPS. However, GPS positioning may be affected by stronger electromagnetic signals from spoofing attacks. In this study, a radar-assisted positioning method based on 5G millimeter waves is proposed. In 5G end-to-end network slices, the rotors of UAVs can be detected and identified by deploying 5G millimeter wave radar. High-resolution range profile (HRRP) is used to obtain the UAV location in the detection zone. Micro-Doppler characteristics are used to identify the UAVs and the cepstrum method is used to extract the number and speed information of the UAV rotor. The sinusoidal frequency modulation (SFM) parameter optimization method is used to separate multiple UAVs. The proposed method provides information on the number of UAVs, the position of the UAV, the number of rotors, and the rotation speed of each rotor. The simulation results show that the proposed radar detection method is well suited for UAV detection and identification and provides a valid GPS-independent method for UAV tracking.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NOMA-Based ALOHA Protocol for Air-to-Ground Communications With Maximum Transmit Power Limits;IEEE Internet of Things Journal;2024-08-15

2. Integrated Sensing and Communication Enabled Multiple Base Stations Cooperative UAV Detection;2024 IEEE International Conference on Communications Workshops (ICC Workshops);2024-06-09

3. Securing Your Airspace: Detection of Drones Trespassing Protected Areas;Sensors;2024-03-22

4. Impact of Uplink Traffic on 5G-Based Passive Radar;2023 Signal Processing Symposium (SPSympo);2023-09-26

5. Idle-Less Slotted ALOHA Protocol for Drone Swarm Identification;IEEE Transactions on Vehicular Technology;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3