Unmanned Aircraft Capture and Control Via GPS Spoofing

Author:

Kerns Andrew J.1,Shepard Daniel P.2,Bhatti Jahshan A.2,Humphreys Todd E.2

Affiliation:

1. Department of Electrical and Computer Engineering The University of Texas at Austin Austin Texas 78712

2. Department of Aerospace Engineering The University of Texas at Austin Austin Texas 78712

Abstract

The theory and practice of unmanned aerial vehicle (UAV) capture and control via Global Positioning System (GPS) signal spoofing are analyzed and demonstrated. The goal of this work is to explore UAV vulnerability to deceptive GPS signals. Specifically, this paper (1) establishes the necessary conditions for UAV capture via GPS spoofing, and (2) explores the spoofer's range of possible post‐capture control over the UAV. A UAV is considered captured when a spoofer gains the ability to eventually specify the UAV's position and velocity estimates. During post‐capture control, the spoofer manipulates the true state of the UAV, potentially resulting in the UAV flying far from its flight plan without raising alarms. Both overt and covert spoofing strategies are considered, as distinguished by the spoofer's attempts to evade detection by the target GPS receiver and by the target navigation system's state estimator, which is presumed to have access to non‐GPS navigation sensor data. GPS receiver tracking loops are analyzed and tested to assess the spoofer's capability for covert capture of a mobile target. The coupled dynamics of a UAV and spoofer are analyzed and simulated to explore practical post‐capture control scenarios. A field test demonstrates capture and rudimentary control of a rotorcraft UAV, which results in unrecoverable navigation errors that cause the UAV to crash.

Publisher

Wiley

Cited by 552 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi‐modem‐based FHSS‐drone takeover with precision spoofing;ETRI Journal;2025-06

2. Time-Based GNSS Attack Detection;IEEE Transactions on Aerospace and Electronic Systems;2025-06

3. Solution of the Problem of Positioning Moving Objects on Analytical Trajectories With a Minimum Composition of Satellite Measurements;2025 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM);2025-05-12

4. Multi-Rotor Redirection Algorithm Using GNSS Spoofer and Radar;Journal of Electromagnetic Engineering and Science;2025-03-31

5. A Survey on Unauthorized UAV Threats to Smart Farming;Drones;2025-03-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3