The Effect on the Fracture Healing following Femoral Neck Shortening after Osteoporotic Femoral Neck Fracture Treated with Internal Fixation: Finite Element Analysis

Author:

Yu Xiao1ORCID,Rong Peng-ze2ORCID,Pang Qing-jiang1ORCID,Chen Xian-jun1ORCID,Shi Lin1ORCID,Wang Cheng-hao1ORCID

Affiliation:

1. Department of Orthopedics, HwaMei Hospital, University of Chinese Academy of Sciences; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China

2. Ningbo University School of Medicine, Ningbo 315211, China

Abstract

Objective. To evaluate the stress status of fracture site caused by femoral neck shortening and to analyze the stress of fracture site and the implants from the finite element point of view. Methods. CT scan data of hip of a normal adult female were collected. Three-dimensional reconstruction MICs and related module function simulation was used to establish the postoperative shortening model of femoral neck fracture with Pauwels angle > 50 ° , which was treated with cannulated screws. The models were divided into four groups: normal femoral neck, shortening in 2.5 mm, shortening in 7.5 mm, and shortening in 12.5 mm. The finite element analysis software msc.nastran2012 was used, and the data of maximum stress and stress nephogram of fracture site and implants were carried out. Results. From normal femoral neck to shortening in 12.5 mm of the femoral neck, the maximum tensile stress increased gradually in the fracture site above the cannulated screws while compressive stress decreased gradually in the fracture site below the cannulated screws, and the maximum stress of the cannulated screws increased gradually with obvious stress concentration at the screw holes in the fracture site, and the peak value of stress concentration was about 179 MPa. Conclusion. The biomechanical environment of the fracture site changed by femoral neck shortening. With the increasing of femoral neck shortening, the stress of the fracture site and implants would be uneven; then, the stability of fracture site would become worse, and the possibility of implant sliding or even breakage would be increased.

Funder

Hwa Mei Hospital, University of Chinese Academy of Sciences

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3