Reducing Radiation Dose in Emergency CT Scans While Maintaining Equal Image Quality: Just a Promise or Reality for Severely Injured Patients?

Author:

Grupp Ulrich1ORCID,Schäfer Max-Ludwig1ORCID,Meyer Henning1ORCID,Lembcke Alexander1,Pöllinger Alexander1,Wieners Gero1,Renz Diane1,Schwabe Philipp2ORCID,Streitparth Florian1

Affiliation:

1. Department of Radiology, Charité, Humboldt University Medical School, Augustenburger Platz 1, 13353 Berlin, Germany

2. Center for Musculoskeletal Surgery, Charité, Humboldt University, Augustenburger Platz 1, 13353 Berlin, Germany

Abstract

Objective. This study aims to assess the impact of adaptive statistical iterative reconstruction (ASIR) on CT imaging quality, diagnostic interpretability, and radiation dose reduction for a proven CT acquisition protocol for total body trauma.Methods. 18 patients with multiple trauma (ISS16) were examined either with a routine protocol (n=6), 30% (n=6), or 40% (n=6) of iterative reconstruction (IR) modification in the raw data domain of the routine protocol (140 kV, collimation: 40, noise index: 15). Study groups were matched by scan range and maximal abdominal diameter. Image noise was quantitatively measured. Image contrast, image noise, and overall interpretability were evaluated by two experienced and blinded readers. The amount of radiation dose reductions was evaluated.Results. No statistically significant differences between routine and IR protocols regarding image noise, contrast, and interpretability were present. Mean effective dose for the routine protocol was25.3±2.9 mSv,19.7±5.8 mSv for the IR 30, and17.5±4.2 mSv for the IR 40 protocol, that is, 22.1% effective dose reduction for IR 30 (P=0.093) and 30.8% effective dose reduction for IR 40 (P=0.0203).Conclusions. IR does not reduce study interpretability in total body trauma protocols while providing a significant reduction in effective radiation dose.

Publisher

Hindawi Limited

Subject

Emergency Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3