DI-ADS: A Deep Intelligent Distributed Denial of Service Attack Detection Scheme for Fog-Based IoT Applications

Author:

Gudla Surya Pavan Kumar12,Bhoi Sourav Kumar2,Nayak Soumya Ranjan3ORCID,Verma Amit4

Affiliation:

1. Faculty of Engineering (Computer Science and Engineering), BPUT, Rourkela 769015, Odisha, India

2. Department of Computer Science and Engineering, Parala Maharaja Engineering College (Govt.), Berhampur 761003, Odisha, India

3. Amity School of Engineering and Technology, Amity University, Noida 201301, UP, India

4. Department of Computer Science & Engineering and University Center for Research and Development, Chandigarh University, Mohali 140413, Punjab, India

Abstract

Nowadays, fog computing plays a very vital role in providing many services to end-based IoT (Internet of Things) systems. The end IoT devices communicate with the middle layer fog nodes and to the above cloud layer to process the user tasks. However, this large data communication experiences many security challenges as IoT devices are being compromised and thus the fog nodes at the fog layer are more prone to a very critical attack known as Distributed Denial of Service (DDoS) attack. The attackers or the compromised IoT devices need to be detected well in the network. Deep Learning (DL) plays a prominent role in predicting the end-user behavior by extracting features and classifying the adversary in the network. But, due to IoT device’s constrained nature in computation and storage facilities, DL cannot be administered on those. In this paper, a deep intelligent DDoS attack detection scheme (DI-ADS) is proposed for fog-based IoT applications. The framework mainly uses a deep learning model (DLM) to detect DDoS attacks in the network. The DLM is installed on the computation module of the fog node that predicts the end IoT device behavior. For the selection of the best DLM model at the fog layer, the performance comparison is made on Deep Neural Multilayer Perceptron (DNMLP) and Long Short-Term Memory (LSTM) models along with the conventional machine learning (ML) models such as Support Vector Machine (SVM), K-Nearest Neighbours (KNN), Logistic Regression (LR), and Random Forest (RF). The simulation is performed using the Python Anaconda platform by considering a new DDoS-SDN (Mendeley Dataset) dataset that consists of three DDoS attacks such as TCP Syn, UDP Flood, and ICMP attacks. From the results, DNMLP showed the best accuracy of 99.44% as compared to other DL and ML models. By outperforming nature in the detection of DDoS attacks, DNMLP is considered in the proposed framework for being implemented at the fog layer.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3