Sodium Butyrate Ameliorates Oxidative Stress-Induced Intestinal Epithelium Barrier Injury and Mitochondrial Damage through AMPK-Mitophagy Pathway

Author:

Li Xin1234ORCID,Wang Chunchun1234,Zhu Jiang1234,Lin Qian1234,Yu Minjie1234,Wen Jiashu1234,Feng Jie1234,Hu Caihong1234ORCID

Affiliation:

1. College of Animal Science, Zhejiang University, Hangzhou 310058, China

2. Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China

3. Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China

4. Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, China

Abstract

Sodium butyrate has gained increasing attention for its vast beneficial effects. However, whether sodium butyrate could alleviate oxidative stress-induced intestinal dysfunction and mitochondrial damage of piglets and its underlying mechanism remains unclear. The present study used a hydrogen peroxide- (H2O2-) induced oxidative stress model to study whether sodium butyrate could alleviate oxidative stress, intestinal epithelium injury, and mitochondrial dysfunction of porcine intestinal epithelial cells (IPEC-J2) in AMPK-mitophagy-dependent pathway. The results indicated that sodium butyrate alleviated the H2O2-induced oxidative stress, decreased the level of reactive oxygen species (ROS), increased mitochondrial membrane potential (MMP), mitochondrial DNA (mtDNA), and mRNA expression of genes related to mitochondrial function, and inhibited the release of mitochondrial cytochrome c (Cyt c). Sodium butyrate reduced the protein expression of recombinant NLR family, pyrin domain-containing protein 3 (NLRP3) and fluorescein isothiocyanate dextran 4 kDa (FD4) permeability and increased transepithelial resistance (TER) and the protein expression of tight junction. Sodium butyrate increased the expression of light-chain-associated protein B (LC3B) and Beclin-1, reduced the expression of P62, and enhanced mitophagy. However, the use of AMPK inhibitor or mitophagy inhibitor weakened the protective effect of sodium butyrate on mitochondrial function and intestinal epithelium barrier function and suppressed the induction effect of sodium butyrate on mitophagy. In addition, we also found that after interference with AMPKα, the protective effect of sodium butyrate on IPEC-J2 cells treated with H2O2 was suppressed, indicating that AMPKα is necessary for sodium butyrate to exert its protective effect. In summary, these results revealed that sodium butyrate induced mitophagy by activating AMPK, thereby alleviating oxidative stress, intestinal epithelium barrier injury, and mitochondrial dysfunction induced by H2O2.

Funder

Zhejiang Provincial Key R&D Program of China

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3