AMPK-PINK1/Parkin Mediated Mitophagy Is Necessary for Alleviating Oxidative Stress-Induced Intestinal Epithelial Barrier Damage and Mitochondrial Energy Metabolism Dysfunction in IPEC-J2

Author:

Cao Shuting,Xiao HaoORCID,Li Xin,Zhu Jiang,Gao Jingchun,Wang Li,Hu Caihong

Abstract

The imbalance of redox biology and oxidative stress leads to intestinal barrier injury and mitophagy. However, much uncertainty still exists about the role of mitophagy in oxidative stress and intestinal function. Here, we showed the effects of hydrogen peroxide (H2O2)-induced oxidative stress on intestinal epithelial cell oxidation balance, intestinal barrier function and mitochondrial energy metabolism and its underlying mechanism. In this study, we found that H2O2-induced oxidative stress activated adenosine monophosphate-activated protein kinase (AMPK) and enhanced mitophagy in intestinal porcine epithelial cells (IPEC-J2). While compound C (AMPK inhibitor) and mdivi-1 (mitophagy inhibitor) significantly reduced the activity of superoxide dismutase (SOD) and increased mitochondrial reactive oxygen species (ROS) levels in H2O2 treated cells. Moreover, compound C and mdivi-1 significantly reduced the trans-epithelium electrical resistant (TER) and increased the fluorescein isothiocyanate-dextran (FD4) flux in H2O2 treated IPEC-J2. Furthermore, compound C and mdivi-1 significantly reduced the activity of mitochondrial complex II. Seahorse XF96 data showed that compound C + mdivi-1+ H2O2 treatment significantly reduced maximum respiratory oxygen consumption and spare respiratory capacity. Additionally, compound C or mdivi-1 treatment reduced the formation of mitochondrial autophagosomes. These results unveiled that AMPK and PINK1/Parkin mediated mitophagy is necessary for alleviating oxidative stress induced intestinal epithelial barrier damage and mitochondrial energy metabolism dysfunction in IPEC-J2.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation

the China Agriculture Research System of MOF and MARA

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3