3D Autonomous Navigation Line Extraction for Field Roads Based on Binocular Vision

Author:

Li Yunwu1ORCID,Wang Xiaojuan1,Liu Dexiong2

Affiliation:

1. School of Technology and Engineering, Southwest University, Chongqing 400716, China

2. National and Local Joint Engineering Laboratory of Intelligent Transmission and Control Technology (Chongqing), Chongqing 400716, China

Abstract

This paper proposes a 3D autonomous navigation line extraction method for field roads in hilly regions based on a low-cost binocular vision system. Accurate guide path detection of field roads is a prerequisite for the automatic driving of agricultural machines. First, considering the lack of lane lines, blurred boundaries, and complex surroundings of field roads in hilly regions, a modified image processing method was established to strengthen shadow identification and information fusion to better distinguish the road area from its surroundings. Second, based on nonobvious shape characteristics and small differences in the gray values of the field roads inside the image, the centroid points of the road area as its statistical feature was extracted and smoothed and then used as the geometric primitives of stereo matching. Finally, an epipolar constraint and a homography matrix were applied for accurate matching and 3D reconstruction to obtain the autonomous navigation line of the field roads. Experiments on the automatic driving of a carrier on field roads showed that on straight roads, multicurvature complex roads and undulating roads, the mean deviations between the actual midline of the road and the automatically traveled trajectory were 0.031 m, 0.069 m, and 0.105 m, respectively, with maximum deviations of 0.133, 0.195 m, and 0.216 m, respectively. These test results demonstrate that the proposed method is feasible for road identification and 3D navigation line acquisition.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3