An Integration Method of Inertial Navigation System and Three-Beam Lidar for the Precision Landing

Author:

Zhang Xiaoyue1ORCID,Liu Pengbo1,Zhang Chunxi1

Affiliation:

1. School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China

Abstract

To ensure the high accuracy, independence, and reliability of the measurement system in the unmanned aerial vehicle (UAV) landing process, an integration method of inertial navigation system (INS) and the three-beam Lidar is proposed. The three beams of Lidar are, respectively, regarded as an independent sensor to integrate with INS according to the conception of multisensor fusion. Simultaneously, the fault-detection and reconstruction method is adopted to enhance the reliability and fault resistance. First the integration method is described. Then the strapdown inertial navigation system (SINS) error model is introduced and the measurement model of SINS/Lidar integrated navigation is deduced under Lidar reference coordinate. The fault-detection and reconstruction method is introduced. Finally, numerical simulation and vehicle test are carried out to demonstrate the validity and utility of the proposed method. The results indicate that the integration can obtain high precision navigation information and the system can effectively distinguish the faults and accomplish the reconstruction to guarantee the normal navigation when one or two beams of the Lidar malfunction.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3