Affiliation:
1. Department of Computer Science, University of Ghana, Legon, Accra, Ghana
Abstract
Heart diseases are a leading cause of death worldwide, and they have sparked a lot of interest in the scientific community. Because of the high number of impulsive deaths associated with it, early detection is critical. This study proposes a boosting Support Vector Machine (SVM) technique as the backbone of computer-aided diagnostic tools for more accurately forecasting heart disease risk levels. The datasets which contain 13 attributes such as gender, age, blood pressure, and chest pain are taken from the Cleveland clinic. In total, there were 303 records with 6 tuples having missing values. To clean the data, we deleted the 6 missing records through the listwise technique. The size of data, and the fact that it is a purely random subset, made this approach have no significant effect for the experiment because there were no biases. Salient features are selected using the boosting technique to speed up and improve accuracies. Using the train/test split approach, the data is then partitioned into training and testing. SVM is then used to train and test the data. The C parameter is set at 0.05 and the linear kernel function is used. Logistic regression, Nave Bayes, decision trees, Multilayer Perceptron, and random forest were used to compare the results. The proposed boosting SVM performed exceptionally well, making it a better tool than the existing techniques.
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献