Empirical exploration of whale optimisation algorithm for heart disease prediction

Author:

Atimbire Stephen Akatore,Appati Justice Kwame,Owusu Ebenezer

Abstract

AbstractHeart Diseases have the highest mortality worldwide, necessitating precise predictive models for early risk assessment. Much existing research has focused on improving model accuracy with single datasets, often neglecting the need for comprehensive evaluation metrics and utilization of different datasets in the same domain (heart disease). This research introduces a heart disease risk prediction approach by harnessing the whale optimization algorithm (WOA) for feature selection and implementing a comprehensive evaluation framework. The study leverages five distinct datasets, including the combined dataset comprising the Cleveland, Long Beach VA, Switzerland, and Hungarian heart disease datasets. The others are the Z-AlizadehSani, Framingham, South African, and Cleveland heart datasets. The WOA-guided feature selection identifies optimal features, subsequently integrated into ten classification models. Comprehensive model evaluation reveals significant improvements across critical performance metrics, including accuracy, precision, recall, F1 score, and the area under the receiver operating characteristic curve. These enhancements consistently outperform state-of-the-art methods using the same dataset, validating the effectiveness of our methodology. The comprehensive evaluation framework provides a robust assessment of the model’s adaptability, underscoring the WOA’s effectiveness in identifying optimal features in multiple datasets in the same domain.

Publisher

Springer Science and Business Media LLC

Reference80 articles.

1. World Health Organization. Cardiovascular Diseases 2020. [Online] (Accessed 10 March 2022); https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1

2. Ghwanmeh, S., Mohammad, A. & Al-Ibrahim, A. Innovative artificial neural networks-based decision support system for heart diseases diagnosis. J. Intell. Learn. Syst. Appl. 5(3), 176–183 (2013).

3. Staffini, A. et al. Heart rate modeling and prediction using autoregressive models and deep learning. Sensors 22(1), 1–13 (2022).

4. Anshori, M. & Haris, M. S. Predicting heart disease using logistic regression. Knowl. Eng. Data Sci. 5(2), 188–196 (2023).

5. Shah, D., Patel, S. & Bharti, S. K. Heart disease prediction using machine learning techniques. SN Comput. Sci. 1, 1–6 (2020).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3