Optimal Neural Network for Predicting Solar Energy in Sensor Units Based on a Cascaded Input/Structure Direct Optimization

Author:

Al-Omary Murad1ORCID,Aljarrah Rafat2ORCID,Albatayneh Aiman1ORCID,Alzaareer Khaled3ORCID,Malkawi Ahmad4ORCID,Jaradat Hussamaldeen5ORCID

Affiliation:

1. German Jordanian University (GJU), Energy Engineering Department, 11180 Amman, Jordan

2. Princess Sumaya University for Technology, Electrical Engineering Department, 11941 Amman, Jordan

3. Philadelphia University, Electrical Engineering Department, 19392 Amman, Jordan

4. The University of Jordan, Mechatronics Engineering Department, Amman 11942, Jordan

5. Chemnitz University of Technology, Professorship for Measurement and Sensor Technology, 09126 Chemnitz, Germany

Abstract

The sensor units are considered one of the significant technologies that use solar energy as an assistant power source to the batteries. Despite their advantages over the other forms of renewables, solar energy has an intermittent nature which negatively affects the operation of these units. Reaching an effective operation ensuring sustainable units requires a prior prediction of the harvested solar energy. Artificial neural networks (ANNs) appeared recently as a promising prediction approach with those units. This is attributed to the high accuracy compared to the conventional stochastic and statistical ones. Till now, the optimal neural network that fits with sensor units has not been precisely determined. This paper is aimed at finding the optimal neural network that would be applied with solar-supplied sensor units. This is performed by applying a cascaded input/structure direct optimization. The optimization process handles the aspects of accuracy, computational efforts, and complexity. It mainly identifies the type and number of parameters that would be utilized as inputs in the first stage. Then, it optimizes the structure by addressing the number of hidden layers and hidden neurons. The corresponding analysis has been implemented for premeasured real data over five-year time period. The results showed that the optimal neural network can be achieved by using three input parameters which are the air temperature (AT), the relative humidity (RH), and the zenith angle ( θ z ). For the structure, it has been concluded that the proposed optimal ANN should have two hidden layers with ten neurons in each of them. Lastly, the proposed optimal ANN was verified against the associated prediction error which is minimized to less than 2%.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3