Impact of using a predictive neural network of multi-term zenith angle function on energy management of solar-harvesting sensor nodes

Author:

Al-Omary Murad1ORCID,Aljarrah Rafat2ORCID,Albatayneh Aiman1ORCID,Alshabi Dua’a1ORCID,Alzaareer Khaled3ORCID

Affiliation:

1. Energy Engineering Department , German Jordanian University (GJU) , Amman Madaba Street, 11180 Amman , Jordan

2. Electrical Engineering Department , Princess Sumaya University for Technology , Khalil Al-Saket Street, 11941 Amman , Jordan

3. Energy Engineering Department , Al Hussein Technical University (HTU) , King Abdullah II Street 242 , Amman , Jordan

Abstract

Abstract Using the Neural Networks to predict solar harvestable energy would contribute to prolonging the duration of the effective operation and thus less consumption in solar-harvesting sensor nodes. The NNs with higher prediction accuracy have the longest effective operation. Till now, the NNs that use the zenith angle function as input have been utilized with only two terms. This paper shows the advantages of using a multi-term zenith angle function on the energy management in the nodes. To this end, this paper considers two, three, and four terms for the function of the zenith angle. The results showed that the case of four terms has the lowest prediction mistakes on average (0.83%) compared to (2.13% and 1.75%) for the cases of two and three terms, respectively. This is followed by a reduction in energy consumption in favor of four terms case. For one month simulation period with hourly prediction, the sensor node worked at the higher consumption mode (M2) in the case of four terms 4 hours less than three terms and 7 hours less than two terms case. Thus, increasing the number of terms in the zenith angle function leads to higher accuracy and less energy consumption.

Funder

German Jordanian University, Deanship of Scientific Research

Publisher

Walter de Gruyter GmbH

Subject

Electrochemistry,Electrical and Electronic Engineering,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3