Online Classification of Road Roughness Conditions with Vehicle Unsprung Mass Acceleration by Sliding Time Window

Author:

Li Zhongxing1ORCID,Yu Wenhao1ORCID,Cui Xiaoli2ORCID

Affiliation:

1. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, China

2. School of Automotive and Mechanical Engineering, Hunan Institute of Technology, Hengyang, China

Abstract

Suspension control systems are in need for more information of road roughness conditions to improve their performance under different roads. Existing methods of gauging road roughness are limited, and they usually involve visual inspections or special vehicles equipped with instruments that can gauge physical measurements of road irregularities. This paper proposes data collection for a period of a time from accelerometers fixed on unsprung mass and uses the mean square values of this datasets divided by vehicle speed to classify the roughness conditions of a section of a road. This approach is possible due to the existence of relationships between the power spectral densities of the road surface, unsprung mass accelerations via a transfer function, and vehicle speed. This paper gave the relationship between the resolution of road roughness classification and the length of time-window and suggestions about choosing the appropriate time-window length on the balance of road roughness resolution and classification delay. Moreover, to enhance the stability of classification, the influence of damping parameters of vehicle suspension on the classification output is studied, and a classification method of road roughness is proposed based on neural network and damping coefficient correction.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3