The Novel Compound Heterozygous Mutations of ECEL1 Identified in a Family with Distal Arthrogryposis Type 5D

Author:

Jin Jie-Yuan1ORCID,Liu Dan-Yu23ORCID,Jiao Zi-Jun1ORCID,Dong Yi1ORCID,Li Jie1ORCID,Xiang Rong14ORCID

Affiliation:

1. School of Life Sciences, Central South University, Changsha, China

2. Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China

3. Department of Emergency, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

4. Human Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China

Abstract

Introduction. Distal arthrogryposis type 5D (DA5D) is an autosomal recessive disease. The clinical symptoms include contractures of the joints of limbs, especially camptodactyly of the hands and/or feet, unilateral ptosis, a round-shaped face, arched eyebrows, and micrognathia, without ophthalmoplegia. ECEL1 is a DA5D causative gene that encodes a membrane-bound metalloprotease. ECEL1 plays important roles in the final axonal arborization of motor nerves in limb skeletal muscles and neuromuscular junction formation during prenatal development. Methods. A DA5D family with webbing of the elbows and fingers was recruited. We performed whole-exome sequencing (WES) and filtered mutations by disease-causing genes of arthrogryposis multiplex congenita (AMC). Mutational analysis and cosegregation confirmation were then performed. Results. We identified novel compound heterozygous mutations of ECEL1 (NM_004826: c.69C>A, p.C23 and c.1810G>A, p.G604R) in the proband. Conclusions. We detected causative mutations in a DA5D family, expanding the spectrum of known ECEL1 mutations and contributing to the clinical diagnosis of DA5D.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3