Affiliation:
1. Ocean System Research Division, Korea Research Institute of Ships and Ocean Engineering (KRISO), No. 32, Yuseong-daero, 1312beon-gil, Yuseong-gu, Daejeon 305-343, Republic of Korea
Abstract
The nonnegligible propagation delay of acoustic signals causes spatiotemporal uncertainty that occasionally enables simultaneous, collision-free packet transmission among underwater nodes (UNs). These transmissions can be handled by efficiently managing the channel access of the UNs in the data-link layer. To this end, Geometric Spatial Reuse-TDMA (GSR-TDMA), a new TDMA-based MAC protocol, is designed for use in centralized, multihop underwater acoustic sensor networks (UASNs), and in this case all UNs are periodically scheduled after determining a geometric map according to the information on their location. The scheduling strategy increases the number of UNs that send packets coincidentally via two subscheduling configurations (i.e., interhop and intrahop scheduling). Extensive simulations are used to investigate the reception success rate (RSR) and the multihop delay (MHD) of GSR-TDMA, and the results are compared to those of previous approaches, including C-MAC and HSR-TDMA. GSR-TDMA outperforms C-MAC; the RSR of GSR-TDMA is 15% higher than that of C-MAC, and the MHD of GSR-TDMA is 30% lower than that of C-MAC at the most. In addition, GSR-TDMA provides even better performance improvements over HSR-TDMA; the RSR of GSR-TDMA is 50% higher than that of HSR-TDMA, and the MHD of GSR-TDMA is an order of102lower than that of HSR-TDMA at the most.
Funder
Ministry of Land, Transport and Maritime Affairs
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献