Multiradar Joint Tracking of Cluster Targets Based on Graph-LSTMs

Author:

Xue Xirui1ORCID,Huang Shucai1,Wei Daozhi1,Xie Jiahao1

Affiliation:

1. Air and Missile Defense Collage, Airforce Engineering University, Xi’an 710051, China

Abstract

The cluster target brings a serious challenge to the traditional multisensor multitarget tracking algorithm because of its large number of members and the cooperative interaction between members. Using multiradar joint tracking cluster target is an alternative method to solve the problem of cluster target tracking, but it inevitably brings the problem of radar-target assignment and tracking information fusion. Aiming at the problem of radar-target assignment and tracking information fusion, a joint tracking method based on graph-long short-term memory neural nets (Graph-LSTMs) is proposed. Firstly, we use multivariable stochastic differential equations (SDE) to model the cooperative interaction of cluster members and transform the derived state space model of cluster members into the same form as the constant velocity (CV) motion model, and the target state equation of cluster which can be used for Bayesian filtering iteration is established. Secondly, based on the detection relationship between radars and cluster members, we introduce the detection confirmation matrix and propose a radar-target assignment method to achieve multiple measurements of single member and detection coverage of all cluster members. Then, each radar uses δ-GLMB filter to estimate the motion state of the assigned targets. Finally, on the basis of spatial discretization, the labels of multiple estimates of cluster member states are obtained. We use the designed Graph-LSTMs to learn the cooperative relationship between target states to fuse the labels and obtain better tracking effect. The experimental results show that the proposed method effectively simulates the cluster motion and realizes the joint estimation of cluster target motion state by multiradar. Our method makes up for the defect that a single radar cannot stably track adjacent multiple targets and achieves better estimation fusion effect than the expectation-maximization (EM) algorithm and mean method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3