Energy Recovery Strategy Numerical Simulation for Dual Axle Drive Pure Electric Vehicle Based on Motor Loss Model and Big Data Calculation

Author:

Xiong Huiyuan12,Zhu Xionglai1,Zhang Ronghui13ORCID

Affiliation:

1. School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China

2. Institute of Dongguan, Sun Yat-sen University, Dongguan, Guangdong 523808, China

3. Guangdong Key Laboratory of Intelligent Transportation System, Sun Yat-sen University, Guangzhou, Guangdong 510275, China

Abstract

Aiming at the braking energy feedback control in the optimal energy recovery of the two-motor dual-axis drive electric vehicle (EV), the efficiency numerical simulation model based on the permanent magnet synchronous motor loss was established. At the same time, under different speed and braking conditions, based on maximum recovery efficiency and data calculation of motor system, the optimization motor braking torque distribution model was established. Thus, the distribution rule of the power optimization for the front and rear electric mechanism was obtained. This paper takes the Economic Commission of Europe (ECE) braking safety regulation as the constraint condition, and finally, a new regenerative braking torque distribution strategy numerical simulation was developed. The simulation model of Simulink and CarSim was established based on the simulation object. The numerical simulation results show that under the proposed strategy, the average utilization efficiency of the motor system is increased by 3.24% compared with the I based braking force distribution strategy. Moreover, it is 9.95% higher than the maximum braking energy recovery strategy of the front axle. Finally, through the driving behavior of the driver obtained from the big data platform, we analyze how the automobile braking force matches with the driver’s driving behavior. It also analyzes how the automobile braking force matches the energy recovery efficiency. The research results in this paper provide a reference for the future calculation of braking force feedback control system based on big data of new energy vehicles. It also provides a reference for the modeling of brake feedback control system.

Funder

Guangdong Science and Technology Department

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3