Analytical Simulation of Heat and Mass Transmission in Casson Fluid Flow across a Stretching Surface

Author:

Khan Kashif Ali1,Jamil Faizan1,Ali Javaid2,Khan Ilyas3ORCID,Ahmed Nauman4ORCID,Andualem Mulugeta5ORCID,Rafiq Muhammad6

Affiliation:

1. Department of Mathematics, University of Engineering and Technology, Lahore, Pakistan

2. Department of Mathematics, GCT, Punjab Higher Education Department, Lahore, Pakistan

3. Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia

4. Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan

5. Department of Mathematics, Bonga University, Bonga, Ethiopia

6. Department of Mathematics, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan

Abstract

This research presents a review of an analytical simulation of heat and mass transmission features of steady, non-Newtonian Casson fluid motion across a permeable medium through a stretching surface. The effects of heat production and thermal emission are put into discussion. Mathematically, the governing model is manipulated by a series of nonlinear partial equations, which are then modified into ordinary differential equations with the assistance of appropriate conversion. Analytical results for such equations are then achieved by invoking the notable technique of the homotopy analysis method (HAM), and its solution sounds good while achieving the convergence guaranteed in the convergence table. Some achievements have been made. The consequence of raising the value of the Casson parameter is comprehended to be putting down the velocity field while increasing the temperature field. Also, the concentration field falls with an increase in the Schmidt number, while it rises with an enhancement in the Soret number. The electric parameter due to Lorentz’s force is capable of accelerating the temperature of the fluid but downsizing the velocity.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3