Mathematical Analysis of Casson Fluid Model for Blood Rheology in Stenosed Narrow Arteries

Author:

Venkatesan J.1,Sankar D. S.2,Hemalatha K.3,Yatim Yazariah4

Affiliation:

1. Department of Mathematics, Rajalakshmi Engineering College, Thandalam, Chennai 602 105, India

2. Division of Mathematics, School of Advanced Sciences, VIT University, Chennai Campus, Chennai 600 127, India

3. Department of Mathematics, Anna University, Chennai 600 025, India

4. School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia

Abstract

The flow of blood through a narrow artery with bell-shaped stenosis is investigated, treating blood as Casson fluid. Present results are compared with the results of the Herschel-Bulkley fluid model obtained by Misra and Shit (2006) for the same geometry. Resistance to flow and skin friction are normalized in two different ways such as (i) with respect to the same non-Newtonian fluid in a normal artery which gives the effect of a stenosis and (ii) with respect to the Newtonian fluid in the stenosed artery which spells out the non-Newtonian effects of the fluid. It is found that the resistance to flow and skin friction increase with the increase of maximum depth of the stenosis, but these flow quantities (when normalized with non-Newtonian fluid in normal artery) decrease with the increase of the yield stress, as obtained by Misra and Shit (2006). It is also noticed that the resistance to flow and skin friction increase (when normalized with Newtonian fluid in stenosed artery) with the increase of the yield stress.

Funder

Universiti Sains Malaysia, Malaysia

Publisher

Hindawi Limited

Subject

Applied Mathematics

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3