Protective Effects of Inorganic and Organic Selenium on Heat Stress in Bovine Mammary Epithelial Cells

Author:

Zou Yixuan1ORCID,Shao Juanjuan1ORCID,Li Yongxin1,Zhao F.-Q.12,Liu Jian-Xin1,Liu Hongyun1ORCID

Affiliation:

1. College of Animal Sciences, Zhejiang University, Hangzhou 310058, China

2. Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405, USA

Abstract

When dairy cows are exposed to high-temperature environment, their antioxidant capacity and productive performance decrease, leading to economic losses. Emerging evidence has shown that selenium (Se) can effectively alleviate heat stress in dairy cows; however, the cellular mechanism underlying this protection is not clear. The purpose of this study was to investigate and compare the protective effects of inorganic Se (sodium selenite, SS) and organic Se (selenite methionine, SM) in MAC-T (mammary alveolar cells-large T antigen, a bovine mammary epithelial cell (BMEC) line) cells during heat stress. MAC-T cells were treated in 4 ways unless otherwise described: (i) cells in the heat treatment (HT) group were cultured at 42.5°C for 1 h and then recovered in 37°C for another 12 h; (ii) the SM group was pretreated with organic Se for 2 h, cultured at 42.5°C for 1 h, and then recovered in 37°C for 12 h; (iii) the SS group was treated similarly to the SM group except that the cells were pretreated with inorganic Se instead of organic Se; and (iv) the control group was continuously cultured in 37°C and received no Se treatment. The results showed that heat shock at 42.5°C for 1 h triggered heat shock response, sabotaged the redox balance, and reduced cell viability in MAC-T cells; and pretreatment of cells with SM or SS effectively alleviated the negative effects of heat shock on the cells. However, the cells were much more sensitive to SS treatment but more tolerant to SM. In addition, two forms of Se appeared to affect the expression of different genes, including nuclear factor erythroid 2-related factor 2 (Nrf2) and inducible nitric oxide synthase (iNOS) in the SM group and thioredoxin reductase 1 (TXNRD1) in the SS group in Nrf2-ARE (antioxidant response element) antioxidant pathway and inflammation response. In summary, results showed the mechanistic differences in the protective effects of organic and inorganic Se on heat stress in BMECs.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3