A Quantum Image Watermarking Scheme Based on Quantum Hilbert Scrambling and Steganography about the Moiré Fringe

Author:

Jiang Jian-Wei1,Zhang Tian1,Li Wei1,Wang Shu-Mei2ORCID

Affiliation:

1. School of Information and Control Engineering, Qingdao University of Technology, Qingdao, China

2. School of Science, Qingdao University of Technology, Qingdao, China

Abstract

In order to boost the security and confidentiality of information in quantum images, on the foundation of the NEQR model, a novel quantum watermarking scheme combining quantum Hilbert scrambling with steganography based on the Moiré fringe is designed in this paper. First of all, for carrier image, and watermark image, the color information and position information are denoted, respectively, by the NEQR model. Next, the watermark image is converted to a disordered image by quantum Hilbert scrambling, and the message of the original watermark image cannot be gained from the disordered image. At last, the watermark image after scrambling is embedded into the carrier image through the steganography of the Moiré fringe, obtaining the watermarked image. Due to the unitary image of the quantum gate, quantum Hilbert inverse scrambling is the opposite process of quantum Hilbert scrambling. In addition, the watermark image can be completely extracted from the watermarked image. What’s more, the experimental simulation and performance analysis of the scheme are done. The experimental simulation proves the feasibility of this algorithm. Visually, there is no difference between the carrier image and the watermarked image. The PSNR between the watermarked image and the carrier image is measured, which quantitatively shows the high similarity. In addition, the time complexity of the quantum circuit is lower than some other quantum image watermarking schemes, which proves the simplicity of this scheme.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3