Fast Vehicle and Pedestrian Detection Using Improved Mask R-CNN

Author:

Xu Chenchen1,Wang Guili12ORCID,Yan Songsong1,Yu Jianghua3,Zhang Baojun1,Dai Shu1,Li Yu1,Xu Lin4ORCID

Affiliation:

1. School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China

2. Anhui Provincial Engineering Laboratory on Information Fusion and Control of Intelligent Robot, Wuhu Anhui, 241002, China

3. School of Communications and Information Engineering, Xi'an University of Posts & Telecommunications, Xi'an 710061, China

4. School of Mathematics and Statistics, Anhui Normal University, Wuhu, 241002, China

Abstract

This study presents a simple and effective Mask R-CNN algorithm for more rapid detection of vehicles and pedestrians. The method is of practical value for anticollision warning systems in intelligent driving. Deep neural networks with more layers have greater capacity but also have to perform more complicated calculations. To overcome this disadvantage, this study adopts a Resnet-86 network as a backbone that differs from the backbone structure of Resnet-101 in the Mask R-CNN algorithm within practical conditions. The results show that the Resnet-86 network can reduce the operation time and greatly improve accuracy. The detected vehicles and pedestrians are also screened out based on the Microsoft COCO dataset. The new dataset is formed by screening and supplementing COCO dataset, which makes the training of the algorithm more efficient. Perhaps, the most important part of our research is that we propose a new algorithm, Side Fusion FPN. The parameters in the algorithm have not increased, the amount of calculation has increased by less than 0.000001, and the mean average precision (mAP) has increased by 2.00 points. The results show that, compared with the algorithm of Mask R-CNN, our algorithm decreased the weight memory size by 9.43%, improved the training speed by 26.98%, improved the testing speed by 7.94%, decreased the value of loss by 0.26, and increased the value of mAP by 17.53 points.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3