Design and Fabrication of Nanoscale IDTs Using Electron Beam Technology for High-Frequency SAW Devices

Author:

Shih Wei-Che1,Chen Ying-Chung1,Chang Wei-Tsai1ORCID,Cheng Chien-Chuan2,Liao Pei-Chun1,Kao Kuo-Sheng3ORCID

Affiliation:

1. Department of Electrical Engineering, National Sun Yat-sen University, No. 70 Lienhai Road, Kaohsiung 80424, Taiwan

2. Department of Electronic Engineering, De Lin Institute of Technology, Lane 380, No. 1 Qingyun Road, Tucheng District, New Taipei 23654, Taiwan

3. Department of Computer and Communication, Shu-Te University, No. 59 Hengshan Road, Yanchao District, Kaohsiung 82445, Taiwan

Abstract

High-frequency Rayleigh-mode surface acoustic wave (SAW) devices were fabricated for 4G mobile telecommunications. The RF magnetron sputtering method was adopted to grow piezoelectric aluminum nitride (AlN) thin films on the Si3N4/Si substrates. The influence of sputtering parameters on the crystalline characteristics of AlN thin films was investigated. The interdigital transducer electrodes (IDTs) of aluminum (Al) were then fabricated onto the AlN surfaces by using the electron beam (e-beam) direct write lithography method to form the Al/AlN/Si3N4/Si structured SAW devices. The Al electrodes were adopted owing to its low resistivity, low cost, and low density of the material. For 4G applications in mobile telecommunications, the line widths of 937 nm, 750 nm, 562 nm, and 375 nm of IDTs were designed. Preferred orientation and crystalline properties of AlN thin films were determined by X-ray diffraction using a Siemens XRD-8 with CuKαradiation. Additionally, the cross-sectional images of AlN thin films were obtained by scanning electron microscope. Finally, the frequency responses of high-frequency SAW devices were measured using the E5071C network analyzer. The center frequencies of the high-frequency Rayleigh-mode SAW devices of 1.36 GHz, 1.81 GHz, 2.37 GHz, and 3.74 GHz are obtained. This study demonstrates that the proposed processing method significantly contributes to high-frequency SAW devices for wireless communications.

Funder

National Science Council

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3