Fusion-Based Deep Learning with Nature-Inspired Algorithm for Intracerebral Haemorrhage Diagnosis

Author:

Alfaer Nada M.1ORCID,Aljohani Hassan M.1ORCID,Abdel-Khalek Sayed.12ORCID,Alghamdi Abdulaziz S.3ORCID,Mansour Romany F.4ORCID

Affiliation:

1. Department of Mathematics and Statistics, College of Science, Taif University, Taif 21944, Saudi Arabia

2. Department of Mathematics, Sohag University, Sohag 82524, Egypt

3. Department of Mathematics, College of Science and Arts, King Abdulaziz University, P. O. Box 344, Rabigh 21911, Saudi Arabia

4. Department of Mathematics, New Valley University, El-Kharga 72511, Egypt

Abstract

Natural computing refers to computational processes observed in nature and human-designed computing inspired by nature. In recent times, data fusion in the healthcare sector becomes a challenging issue, and it needs to be resolved. At the same time, intracerebral haemorrhage (ICH) is the injury of blood vessels on the brain cells, which is mainly liable for stroke. X-rays and computed tomography (CT) scans are widely applied for locating the haemorrhage position and size. Since manual segmentation of the CT scans by planimetry by the use of radiologists is a time-consuming process, deep learning (DL) is used to attain effective ICH diagnosis performance. This paper presents an automated intracerebral haemorrhage diagnosis using fusion-based deep learning with swarm intelligence (AICH-FDLSI) algorithm. The AICH-FDLSI model operates on four major stages namely preprocessing, image segmentation, feature extraction, and classification. To begin with, the input image is preprocessed using the median filtering (MF) technique to remove the noise present in the image. Next, the seagull optimization algorithm (SOA) with Otsu multilevel thresholding is employed for image segmentation. In addition, the fusion-based feature extraction model using the Capsule Network (CapsNet) and EfficientNet is applied to extract a useful set of features. Moreover, deer hunting optimization (DHO) algorithm is utilized for the hyperparameter optimization of the CapsNet and DenseNet models. Finally, a fuzzy support vector machine (FSVM) is applied as a classification technique to identify the different classes of ICH. A set of simulations takes place to determine the diagnostic performance of the AICH-FDLSI model using the benchmark intracranial haemorrhage data set. The experimental outcome stated that the AICH-FDLSI model has reached a proficient performance over the compared methods in a significant way.

Funder

Taif University

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3