Deep Learning-Based Detection and Diagnosis of Subarachnoid Hemorrhage

Author:

Gou Xiaohong1,He Xuenong2ORCID

Affiliation:

1. Department of Critical Care Medicine, Yongchuan Hospital, Chongqing Medical University, Yongchuan, Chongqing 402160, China

2. Chongqing Medical University, Department of Neurosurgery, Yongchuan, Chongqing 402160, China

Abstract

Subarachnoid hemorrhage (SAH) is one of the critical and severe neurological diseases with high morbidity and mortality. Head computed tomography (CT) is among the preferred methods for the diagnosis of SAH, which is confirmed by CT showing high-density shadow in the subarachnoid space. Analysis of these images through a deep learning-based subarachnoid hemorrhage will reduce the approximate rate of misdiagnosis in general and missed diagnosis by clinicians in particular. Deep learning-based detection of subarachnoid hemorrhage mainly includes two tasks, i.e., subarachnoid hemorrhage classification and subarachnoid hemorrhage region segmentation. However, it is difficult to effectively judge reliability of the model and classify bleeding which is based on limited predictive probability of convolutional neural network output. Moreover, deep learning-based bleeding area segmentation requires a large amount of training data to be marked in advance and the large number of network parameters makes the model training unable to reach the optimal. To resolve these problems associated with existing models, Bayesian deep learning and neural network-based hybrid model is presented in this paper to estimate uncertainty and efficiently classify subarachnoid hemorrhage. Uncertainty estimation of the proposed model helps in judging whether the model’s prediction is reliable or not. Additionally, it is used to guide clinicians to find the neglected subarachnoid hemorrhage area. In addition, a teacher-student mechanism deep learning model was designed to introduce observational uncertainty estimation for semisupervised learning of subarachnoid hemorrhage. Observation uncertainty estimation detects the uncertain bleeding areas in CT images and then selects areas with high reliability. Finally, it uses these unlabeled data for model training purposes as well.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3