Experimental Study on Spray Characteristics of Gasoline/Hydrogenated Catalytic Biodiesel under GCI Conditions

Author:

Yuan Wenhua1ORCID,Liao Jingjing1ORCID,Li Bei2,Zhong Wenjun2

Affiliation:

1. Department of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China

2. School of Energy Power Engineering, Jiangsu University, Zhenjiang 212013, China

Abstract

The new blended fuel (gasoline/hydrogenated catalytic biodiesel) is expected to address the cold start problem under low temperature of gasoline compression ignition due to its excellent ignition performance. Additionally, its spray behavior as the combustion boundary condition could have a direct impact on the characteristics of subsequent combustion. Therefore, the objective of this study is to reveal the effects of hydrogenated catalytic biodiesel/gasoline on the spray characteristics under various ambient conditions. As a significant index of spray characteristics, the spray penetration was achieved by applying Mie scattering methods under nonevaporation and evaporation conditions on a constant volume combustion chamber. In addition, the experimental results were compared against the calculated values of the models. As demonstrated by the results, a better spray performance can be achieved by the blended fuel than diesel and hydrogenated catalytic biodiesel. In respect of spray penetration, there is almost no difference among the three fuels under the ambient temperature of 323 K. Nevertheless, the blended fuel is lower than that of hydrogenated catalytic biodiesel and diesel when the ambient temperature is 434 K and 523 K. Moreover, the blended fuel is the first to reach the stable state, and the hydrogenated catalytic biodiesel is earlier than diesel for the spray penetration. Meanwhile, the spray model is identified as suitable for the blended fuel.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3