Model Predictive Control for Automatic Carrier Landing with Time Delay

Author:

Cui Kaikai1,Han Wei1,Liu Yujie1,Wang Xinwei2,Su Xichao1,Liu Jie3ORCID

Affiliation:

1. Naval Aviation University, Yantai 264001, China

2. Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China

3. War Research Institute, Academy of Military Sciences, Beijing 100850, China

Abstract

This paper focuses on the problem of automatic carrier landing control with time delay, and an antidelay model predictive control (AD-MPC) scheme for carrier landing based on the symplectic pseudospectral (SP) method and a prediction error method with particle swarm optimization (PE-PSO) is designed. Firstly, the mathematical model for carrier landing control with time delay is given, and based on the Padé approximation (PA) principle, the model with time delay is transformed into an equivalent nondelay one. Furthermore, a guidance trajectory based on the predicted trajectory shape and position deviation is designed in the MPC framework to eliminate the influence of carrier deck motion and real-time error. At the same time, a rolling optimal control block is designed based on the SP algorithm, in which the steady-state carrier air wake compensation is introduced to suppress the interference of the air wake. On this basis, the PE-PSO delay estimation algorithm is proposed to estimate the unknown delay parameter in the equivalent control model. The simulation results show that the delay estimation error of the PE-PSO algorithm is smaller than 2 ms, and the AD-MPC algorithm proposed in this paper can limit the landing height error within ±0.14 m under the condition of multiple disturbances and system input delay. The control accuracy of AD-MPC is much higher than that of the traditional pole assignment algorithm, and its computational efficiency meets the requirement of real-time online tracking.

Publisher

Hindawi Limited

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3