An Advanced Control Method for Aircraft Carrier Landing of UAV Based on CAPF–NMPC

Author:

Chen Danhe12,Xu Lingfeng12,Wang Chuangge12

Affiliation:

1. School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China

2. Key Laboratory of Special Engine Technology, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

This paper investigates a carrier landing controller for unmanned aerial vehicles (UAVs), and a nonlinear model predictive control (NMPC) approach is proposed considering a precise motion control required under dynamic landing platform and environment disturbances. The NMPC controller adopts constraint aware particle filtering (CAPF) to predict deck positions for disturbance compensation and to solve the nonlinear optimization problem, based on a model establishment of carrier motion and wind field. CAPF leverages Monte Carlo sampling to optimally estimate control variables for improved optimization, while utilizing constraint barrier functions to keep particles within a feasible domain. The controller considers constraints such as fuel optimization, control saturation, and flight safety to achieve trajectory control. The advanced control method enhances the solution, estimating optimal control sequences of UAV and forecasting deck positions within a moving visual field, with effective trajectory tracing and higher control accuracy than traditional methods, while significantly reducing single-step computation time. The simulation is carried out using UAV “Silver Fox”, considering several scenarios of different wind scales compared with traditional CAPF–NMPC and the nlmpc method. The results show that the proposed NMPC approach can effectively reduce control chattering, with a landing error in rough marine environments of around 0.08 m, and demonstrate improvements in trajectory tracking capability, constraint performance and computational efficiency.

Funder

key laboratory of space intelligent control technology stability

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3