Affiliation:
1. Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Xidian University, Xi’an 710071, China
2. School of Computer Science Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea
Abstract
A semisupervised classification method based on particle swarm optimization (PSO) is proposed. The semisupervised PSO simultaneously uses limited labeled samples and large amounts of unlabeled samples to find a collection of prototypes (or centroids) that are considered to precisely represent the patterns of the whole data, and then, in principle of the “nearest neighborhood,” the unlabeled data can be classified with the obtained prototypes. In order to validate the performance of the proposed method, we compare the classification accuracy of PSO classifier, k-nearest neighbor algorithm, and support vector machine on six UCI datasets, four typical artificial datasets, and the USPS handwritten dataset. Experimental results demonstrate that the proposed method has good performance even with very limited labeled samples due to the usage of both discriminant information provided by labeled samples and the structure information provided by unlabeled samples.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献