Garbage classification based on a cascade neural network

Author:

Zhang Xiliang,Zhao Na,Lv Qinyuan,Ma Zhenyu,Qin Qin,Gan Weifei,Bai Jianfeng,Gan Ling

Abstract

Most existing methods of garbage classification utilize transfer learning to acquire acceptable performance. They focus on some smaller categories. For example, the number of the dataset is small or the number of categories is few. However, they are hardly implemented on small devices, such as a smart phone or a Raspberry Pi, because of the huge number of parameters. Moreover, those approaches have insufficient generalization capability. Based on the aforementioned reasons, a promising cascade approach is proposed. It has better performance than transfer learning in classifying garbage in a large scale. In addition, it requires less parameters and training time. So it is more suitable to a potential application, such as deployment on a small device. Several commonly used backbones of convolutional neural networks are investigated in this study. Two different tasks, that is, the target domain being the same as the source domain and the former being different from the latter, are conducted besides. Results indicate with ResNet101 as the backbone, our algorithm outperforms other existing approaches. The innovation is that, as far as we know, this study is the first work combining a pre-trained convolutional neural network as a feature extractor with extreme learning machine to classify garbage. Furthermore, the training time and the number of trainable parameters is significantly shorter and less, respectively.

Publisher

Czech Technical University in Prague - Central Library

Subject

Artificial Intelligence,Hardware and Architecture,General Neuroscience,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3