Experimental Study on Stiffness Softening of Soil-Rock Mixture Backfill under Metro Train Cyclic Load

Author:

Zhong Zuliang12ORCID,Zou Hong1,Hu Xiangxiang1,Liu Xinrong12

Affiliation:

1. School of Civil Engineering, Chongqing University, Chongqing 400045, China

2. National Joint Engineering Research Center of Geohazard Prevention in Reservoir Area, Chongqing 400045, China

Abstract

Due to the thick soil layer, short backfill time, and low degree of consolidation of the soil-rock mixture backfill in Chongqing city, metro train tunnels passing through this type of strata are prone to large settlements during operation, which greatly affects the stability of the tunnel and the safety of metro train operations. In response to this problem, the dynamic triaxial test of the soil-rock mixture backfill under cyclic loading was carried out to study the dynamic characteristics of the soil-rock mixture backfill under cyclic loading. The effect of initial consolidation degree, effective consolidation confining pressure, and rock content on the stiffness softening of soil-rock mixture backfill was analyzed. The results show that the initial consolidation degree, effective consolidation confining pressure, and rock content are all important factors affecting the stiffness of soil-rock mixture backfill under cyclic loading. As the number of cycles increases, the lower the initial consolidation degree and effective consolidation confining pressure, the faster the attenuation of the softening index, and the larger the amplitude. As the rock content increases, the softening index increases and the stiffness of the backfill changes from softening to hardening. Based on the test data, the softening-hardening model of the soil-rock mixture is established, which is in good agreement with the field test results. This study can provide a reference for predicting and controlling the postconstruction settlement of the metro tunnel in the soil-rock mixture backfill.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3