Affiliation:
1. School of Civil Engineering, Harbin Institute of Technology, Heilongjiang, Harbin 150090, China
2. School of Transportation Science and Engineering, Harbin Institute of Technology, Heilongjiang, Harbin 150090, China
Abstract
This paper presents the results of a laboratory experiment that aimed to characterize the permanent deformation behavior of coarse grained soils. To evaluate the effects of the cyclic stress amplitude, initial mean stress, and initial stress ratio on the permanent axial deformation, six series of repeated load triaxial tests were performed. The results indicate that permanent deformation of coarse grained soils increased with increasing cyclic stress amplitude. In particular, for relative low cyclic stress levels, accumulation rate of permanent deformation decreased progressively with number of cycles and eventually reached an equilibrium state. The initial stress ratio was also found to obviously facilitate the buildup of axial deformation since it means higher deviatoric stress as the mean pressure kept constant. As the initial stress ratio was less than the slope of static failure line, the experimental results indicated that the increase of initial mean stress enhanced the capability of resisting deformation. A simplified mechanistic empirical prediction model was proposed, which predicted the permanent deformation as product of four independent functions about cyclic stress amplitude, initial mean stress, initial stress ratio, and number of load cycles. Satisfactory predictions of the permanent deformation behavior of coarse grained soils were obtained with the proposed model.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Materials Science
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献