Efficient Parallel Sorting for Migrating Birds Optimization When Solving Machine-Part Cell Formation Problems

Author:

Soto Ricardo123,Crawford Broderick145,Almonacid Boris1,Paredes Fernando6

Affiliation:

1. Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, Chile

2. Universidad Autónoma de Chile, 7500138 Santiago, Chile

3. Universidad Científica del Sur, Lima 18, Peru

4. Universidad Central de Chile, 8370178 Santiago, Chile

5. Universidad San Sebastián, 8420524 Santiago, Chile

6. Universidad Diego Portales, 8370109 Santiago, Chile

Abstract

The Machine-Part Cell Formation Problem (MPCFP) is a NP-Hard optimization problem that consists in grouping machines and parts in a set of cells, so that each cell can operate independently and the intercell movements are minimized. This problem has largely been tackled in the literature by using different techniques ranging from classic methods such as linear programming to more modern nature-inspired metaheuristics. In this paper, we present an efficient parallel version of the Migrating Birds Optimization metaheuristic for solving the MPCFP. Migrating Birds Optimization is a population metaheuristic based on the V-Flight formation of the migrating birds, which is proven to be an effective formation in energy saving. This approach is enhanced by the smart incorporation of parallel procedures that notably improve performance of the several sorting processes performed by the metaheuristic. We perform computational experiments on 1080 benchmarks resulting from the combination of 90 well-known MPCFP instances with 12 sorting configurations with and without threads. We illustrate promising results where the proposal is able to reach the global optimum in all instances, while the solving time with respect to a nonparallel approach is notably reduced.

Funder

Comisión Nacional de Investigación Científica y Tecnológica

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3