Solving the Manufacturing Cell Design Problem through an Autonomous Water Cycle Algorithm

Author:

Soto Ricardo,Crawford Broderick,Lanza-Gutierrez Jose M.,Olivares RodrigoORCID,Camacho Pablo,Astorga Gino,de la Fuente-Mella Hanns,Paredes Fernando,Castro Carlos

Abstract

Metaheuristics are multi-purpose problem solvers devoted to particularly tackle large instances of complex optimization problems. However, in spite of the relevance of metaheuristics in the optimization world, their proper design and implementation to reach optimal solutions is not a simple task. Metaheuristics require an initial parameter configuration, which is dramatically relevant for the efficient exploration and exploitation of the search space, and therefore to the effective finding of high-quality solutions. In this paper, the authors propose a variation of the water cycle inspired metaheuristic capable of automatically adjusting its parameter by using the autonomous search paradigm. The goal of our proposal is to explore and to exploit promising regions of the search space to rapidly converge to optimal solutions. To validate the proposal, we tested 160 instances of the manufacturing cell design problem, which is a relevant problem for the industry, whose objective is to minimize the number of movements and exchanges of parts between organizational elements called cells. As a result of the experimental analysis, the authors checked that the proposal performs similarly to the default approach, but without being specifically configured for solving the problem.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference67 articles.

1. Design, manufacture, and production control of a standard machine;Flanders;Trans. Am. Soc. Mech. Eng.,1924

2. Cell formation in group technology using constraint programming and Boolean satisfiability

3. Solving Manufacturing Cell Design Problems Using Constraint Programming;Soto,2012

4. A genetic algorithm-based approach for design of independent manufacturing cells

5. A simulated annealing approach for manufacturing cell formation with multiple identical machines

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3