Application of the WNN-Based SCG Optimization Algorithm for Predicting Soft Soil Foundation Engineering Settlement

Author:

Li Guihua1ORCID,Han Chenyu1ORCID,Mei Hong1,Chen Shuai1

Affiliation:

1. School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China

Abstract

Settlement prediction in soft soil foundation engineering is a newer technique. Predicting soft soil settling has long been one of the most challenging techniques due to difficulties in soft soil engineering. To overcome these challenges, the wavelet neural network (WNN) is mostly used. So, after assessing its estimate performance, two elements, early parameter selection and system training techniques, are chosen to optimize the traditional WNN difficulties of readily convergence to the local infinitesimal point, low speed, and poor approximation performance. The number of hidden layer nodes is determined using a self-adaptive adjustment technique. The wavelet neural network (WNN) is coupled with the scaled conjugate gradient (SCG) to increase the feasibility and accuracy of the soft fundamental engineering settlement prediction model, and a better wavelet network for the soft ground engineering settlement prediction is suggested in this paper. Furthermore, we have proposed the technique of locating the early parameters based on autocorrelation. The settlement of three types of traditional soft foundation engineering, including metro tunnels, highways, and high-rise building foundations, has been predicted using our proposed model. The findings revealed that the model is superior to the backpropagation neural network and the standard WNN for solving problems of approximation performance. As a result, the model is acceptable for soft foundation engineering settlement prediction and has substantial project referential value.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Reference50 articles.

1. Prediction of soft ground settlement based on BP neural network-grey system united model;P. Tao;Rock and Soil Mechanics,2005

2. Review on research of deformation prediction of metro tunnel construction;T.-sheng Wang;Advances in Science and Technology of Water Resources,2003

3. A network traffic prediction model of smart substation based on IGSA‐WNN

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3