Effect of Culture Media and Plant Growth Regulators on Shoot Proliferation and Rooting of Internode Explants from Moroccan Native Almond (Prunus dulcis Mill.) Genotypes

Author:

Kodad Souhayla1ORCID,Melhaoui Reda1ORCID,Hano Christophe2,Addi Mohamed1,Sahib Nargis1,Elamrani Ahmed1,Abid Malika1,Mihamou Aatika1

Affiliation:

1. Laboratoire D’Amélioration des Productions Agricoles, Biotechnologie & Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco

2. Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, Université D’Orléans, 21 Rue de Loigny La Bataille, F-28000 Chartres, France

Abstract

In this study, several methods have been used to facilitate shoot formation from nodal explants of local almond ecotypes known as “Beldi” grown in Eastern Morocco. Nodal segments of divers old local genotypes were cultured on various concentrations of auxin (indole-3-butyric acid (IBA)) and cytokinins (6-benzyl-aminopurine (BAP), thidiazuron (TDZ), and kinetin (KIN)) added to two different media (Murashige and Skoog (MS) and Heller medium). The results showed that TDZ was more effective than the other tested hormones for in vitro proliferation of the “Beldi” ecotype. TDZ at the concentration of 1 mg/L significantly improved the nodal shoot proliferation rate, with the highest percentage (63.6% ± 0.63) and number of regenerated shoots (13 ± 0.54) recorded for S1 genotype inoculated on MS medium, while the most significant rooting rate (60.41% ± 0.81) of proliferated shoots and number of roots per shoot (7.3 ± 1.36) were achieved for S2 genotype on 1 mg/L of IBA incorporated to a half-strength MS medium. With 80% of plantlets survival, the rooted shoots were successfully adapted to the in vivo conditions and were grown vigorously in the greenhouse without any morphological abnormalities.

Publisher

Hindawi Limited

Subject

Agronomy and Crop Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3