Hydrothermal Synthesis and Hydrogen Sensing Properties of NanostructuredSnO2with Different Morphologies

Author:

Chen Weigen1,Gan Hongli1ORCID,Zhang Wei2,Mao Zeyu1

Affiliation:

1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400030, China

2. Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China

Abstract

In this work, nanoscale SnO2with various geometrical morphologies, including pine needle-like, sphere-like, sheet-like, grape-like nanostructures, was prepared via a facile hydrothermal process. Microstructures and morphologies of all the as-synthesized products were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). Meanwhile, the specific surface areas of the as-prepared SnO2nanostructures were determined by Brunauer-Emmett-Teller (BET) analysis. Gas sensors were fabricated and their gas sensing properties towards hydrogen were systematically investigated. The results indicate pine needle-like SnO2structure exhibits exclusive better gas sensing performances to hydrogen than the other morphologies, which can be attributed to its novel shape with a large specific surface area. Such an unexpected morphology is a promising candidate for the use of SnO2as a gas sensing material in future hydrogen sensor applications.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3