Pitting Corrosion Resistance Influencing Corrosion Fatigue Behavior of an Austenitic Stainless Steel in Chloride-Containing Environments

Author:

Klapper Helmuth Sarmiento,Menendez Carlos1,Jesse Sebastian2

Affiliation:

1. Baker Hughes, a GE Company, 12645 W Airport Blvd, Sugar Land, Texas 77478.

2. Baker Hughes, a GE Company, Baker-Hughes-Strasse 1, D-29221 Celle, Germany.

Abstract

Strain-hardened austenitic stainless steels are commonly used as structural materials in drilling equipment because they meet the demanding requirements in terms of mechanical, magnetic, and chemical properties necessary for drilling technologies in subterranean energy resources exploration. Drilling operational conditions might become a challenge for the integrity of these materials due to the cyclic loading the drillstring is subjected to, in combination with the downhole temperature, and the corrosivity of the drilling fluid. In this research work, the relationship among the pitting corrosion resistance of one Mn-stabilized austenitic stainless steel and its corrosion fatigue behavior has been determined by means of electrochemical methods, advanced surface characterization, and corrosion fatigue testing in brines of near-neutral pH with different chloride contents at room temperature (RT) and 150°C. It has been determined that the corrosion fatigue behavior of the investigated CrMn stainless steel is strongly affected by its susceptibility to pitting corrosion. The synergistic effect between the corrosive environment and the mechanical load depends upon the applied stress amplitude and the pitting resistance of the material. The corrosion fatigue behavior of the austenitic stainless steel at RT was synergistically affected by the environmental and loading conditions at low stress amplitudes. In contrast, the large susceptibility to pitting of the material at 150°C has a significant detrimental effect on its corrosion fatigue behavior when subjected to high stress amplitudes. The observed damage mechanism at 150°C can be described as pitting-induced corrosion fatigue because pit propagation controlled the corrosion fatigue behavior of the CrMn stainless steel. The obtained experimental results have shown that the pitting resistance, assessed for instance by multiple electrochemical methods, could in cases where pitting susceptibility has a large influence on the environmentally sustained cracking mechanism, be used as an indicator of the expected corrosion fatigue behavior of the material. As demonstrated in this study, however, results from accelerated electrochemical testing solely might have a limited prediction capability of long-term corrosion behavior.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3