Affiliation:
1. Department of Applied Mathematics, Feng Chia University, Seatwen, Taichung 40724, Taiwan
Abstract
Electroless deposition for fabricating copper (Cu) interconnects of integrated circuits has drawn attention due to its low processing temperature, high deposition selectivity, and high coverage. In this paper, three-dimensional computer simulations of the qualitative growth properties of Cu particles and two-dimensional simulations of the trench-filling properties are conducted. The mathematical model employed in the study is a reaction-diffusion equation. An implicit finite difference discretization with a red-black Gauss-Seidel method as a solver is proposed for solving the reaction-diffusion equation. The simulated deposition properties agree with those observed in experimentation. Alternatives to improve the deposition properties are also discussed.
Subject
General Engineering,General Mathematics